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Estimation of Safe Doses: Critical Review
of the Hockey Stick Regression Method
by Takemi Yanagimoto* and Eiji Yamamotot

The hockey stick regression method is a convenient method to estimate safe doses, which is a kind of
regression method using segmented lines. The method seems intuitively to be useful, but needs the
assumption ofthe existence ofthe positive threshold value. The validity ofthe assumption is considered to be
difficult to be shown.
The alternative methods which are not based on the assumption, are given under suitable dose-response

curvesby introducing a risk level. Here the method using the probit model iscompared with the hockey stick
regression method. Computational results suggest that the alternative method is preferable. Furthermore
similar problems in the case that response is measured as a continuous value are also extended.
Data exemplified are concerned with relations of S02 to simple chronic bronchitis, relations of photo-

chemkal oxidants to eye discomfort and residual antibiotics in the lever of the chicks. These data was
analyzed by the original authors under the assumption of the existence of the positive threshold values.

Introduction
Many techniques and methods for estimation of

safe doses have been proposed and discussed as a
current topic of biostatistics. Estimation of safe
doses concerning various chemical compounds is
important, even though it is very difficult.
The hockey stick (HS) regression method is an

interesting which was proposed by Hasselblat and
others (1) to obtain maximum no-adverse-health-
effect concentration of photochemical oxidants. The
HS regression method is a kind of regression method
using segmented curves (2, 3), and has attracted
many researchers' attention.

In this paper we study properties of the HS regres-
sion method, especially validity of it. For this pur-
pose, the HS model was compared with other regres-
sion models like the probit model and the log-log
linear model. For the latter model, a risk level is used
to define a safe dose. A risk level was used previ-
ously (4) and has been supported by subsequent re-
searchers.
A safe dose does not mean here a dose which
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causes no harmful effects, and therefore can not be
used directly as a standard by the administration. It
should be considered as a criterion for evaluation of
safety.
The HS regression model and its method is re-

viewed. Data on which the current standard of S02 iS
partly based are analyzed and discussed. A re-
analysis of relationships between photochemical
oxidant and eye discomfort is given. In these two
examples the HS model and the probit model are
compared. Some conclusions and suggestions are
obtained, and two related topics are discussed.

Hockey Stick Regression Method
The HS regression function is defined as a dose-

response curve as follows. For some xo
f(x)=fpo forx xo

= 8 1 + 82x for x > xo (1)
This means that for a suitable dose xo, f(x) remains
constant for any x less than xo and increases linearly
as x increases for any x more than xo. The dose xo is
considered as a physiological threshold value. /80
represents a spontaneous or baseline response which
is caused by background stimuli. The main purpose
is to get a suitable estimator of xo. When xo means
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really a safe dose, a lower confidence limit is prefer-
able.
An assumption of existence of a threshold value is

necessary to considerxo as a safe dose, on which the
HS regression model is based. This assumption
seems to be serious, since we have no proof of ex-
istence of threshold values of substances surround-
ing us such as food additives and environmental
pollutants which many human beings are exposed to.
Generally the HS method is only a operational one to
obtain a value as the safe dose.
The method was studied previously (1) and used

for getting relationships between daily maximum
hourly oxidant levels and daily symptom rate re-
ported by student nurses in Los Angeles (5), which
will be discussed in detail below. The method is
accepted by Japanese research workers, such as
epidemiologists, who are interested in relationships
between concentration of air pollutants and preva-
lence ratios from epidemiological surveys. These
relationships are needed to obtain criteria on which
air quality standards are based.
Let (xl, yl), . . ., (xn, Yn) denote data where the x

represent doses and they are measures of responses.
Responses are mainly measured by continuous real
values or dichotomous values.

Firstly, suppose that response is continuous. The
HS model is defined by

Yi =f(xi) + Ei
i = 1, 2,. ..., n (2)

wheref(x) is defined in Eq. (1). Ei (i = 1, 2, . . ., n) are
mutually independent and are distributed according
to N (0, ori2), respectively. o-i possibly depend on ni,
respectively. Estimators PBo, P, and P2 of the param-
eters ,80, ,81, and /32, respectively, are obtained by the
maximum likelihood method. Sometimes a flat line
B8o and a linear line f81 + /82 x are estimated by sepa-
rated data. Data to estimate I30 are considered as
those of non-polluted areas. This case will be seen in
the next section. Estimators are given by the least-
square method separately.'Generally, both lines are
estimated simultaneously using the constrained
least-square method.
Next, suppose response is dichotomous. The HS

model is defined by
y-- Bi f (xi)],

i = 1, 2, .. ., n (3)
where Bj(p) denotes binomial distribution with its
incidence probabilityp. Parameters are estimated by
the maximum likelihood method.
An estimatorxo ofan intersection x0 is obtained by

the estimators X, A, and T2. When x0 is considered
as a safe dose, x0 should be a lower limit of a confi-

dence interval, in order to make a estimator conser-
vative. A confidence interval is usually able to be
calculated approximately.

Application to Chronic Bronchitis
and SO2
One of the most important criteria, which the cur-

rent air quality standard of sulfur dioxide (S02) in
Japan is based on, comes from epidemiological sur-
veys. The surveys were conducted in Cities of
Osaka, Akoh, and Yokkaichi (6). A prevalence ratio
of positive simple chronic bronchitis for each area
was obtained. Questionnaires were made according
to them on respiratory symptoms given by British
Medical Research Council (7). Thus chronic bron-
chitis is defined as persistent cough and phlegm.
The prevalence ratios were compared with aver-

age concentrations of S02 during the three years.
These data are listed in Table 1. We cannot obtain
exact sample size in each area and regard it as 2000
when necessary.
The original analysis (6) is as follows. The areas

where the surveys were conducted are divided into
the former eight areas which are considered as non-
polluted areas and the latter nine polluted ones. Let
yi denote prevalance ratios, and xi average concen-
trations OfS02. The following HS model is assumed:

Yi =f(xi) + Ei

Ei - N(0, v.2)
i = 1, . . ., 17 (4)

Table 1. Average concentrations of SO2 and prevalence ratios of
chronic bronchitis.a

S02, Prevalence
mg/day/100 cm2 ratio

0.21 0.035
0.28 0.033
0.27 0.031
0.15 0.030
0.15 0.029
0.14 0.027
0.13 0.027
0.14 0.025
3.4 0.078
2.75 0.059
2.75 0.052
2.1 0.048
1.6 0.038
1.55 0.037
1.15 0.032
1.0 0.027
0.9 0.024

aData of Mantel and Bryan (4).
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FIGURE 1. Data of S02 and chronic bronchitis, and fitted regres-
sion lines.

f3o is estimated by data from the nonpolluted areas,
while /3, and A32 by data from the polluted areas.
Using the estimators 13o, 1, and ,32, the estimatorx£
of x0 is defined by

180 = /31 + 82Xo0 (5)
The fitted regression line is given by

go0 = 0.02963
w i + :2X = 0.00765 + 0.01898x (6)

which is described in Figure 1. From this x0 is esti-
mated at 1.160.
However, in order to consider x0 as a safety con-

centration, lower confidence limits ofx0 are prefera-
ble to the above estimator. For various assurance
levels lower confidence limits are given in Table 2.
Though the above analysis is clear and simple,

some conditions must be fulfilled. It is very difficult
to consider the parameter x0 as a safety concentra-
tion, even if the HS regression model is close to a
"true" model, because a "true" regression line, if it
exists, must be smoothly increasing.
Table 2. Lower confidence linits under the HS model with various

kinds of assurance levels for data of Table 1.

Confidence
Level a limits

0.5 1.160
0.05 0.953
0.01 0.834
0.005 0.786

Probit Analysis
To avoid the difficulty mentioned above, we may

use a model with a smoothly and increasing regres-
sion curve. The most popular model to interpret a
dose-response relationship is the probit model. That
is, a random variable Y which represents response of
an individual under dose x, has its distribution

Y(x) Bi[,30 + (1 -/80) ( (01 + 32 log1x)] (7)
where (x) is the distribution function of the stan-
dard normal distribution. /0 means a spontaneous
prevalence ratio. /30 is assumed to be positive, since
chronic bronchitis is nonspecific. In fact, /30 is con-
sidered about 0.03 in Japan, as Table 1 shows.

Since the probit model implies nonexistence of a
positive threshold value, we need another definition
of safety concentration instead of a threshold value.
The value x0 is defined by introducing a risk level p

+ (1 - 30))4 (/31 + /32logxO) = + (1 - /3o)P
(8)

that is,

logx0 = [cv-' (p) - 81]/,82 (9)
This definition is in line with Mantel and Bryan (4)
and others, who presented methods for estimating
safe doses against carcinogenicity from experi-
mental data. They have been studied by many re-
searchers, especially for these five years. The most
difficult problem is that of extrapolation, but fortu-
nately, this problem does not occur here.
An estimator x0 of the safe dose x0 is defined by a

lower confidence limit with an assurance level 1 - a,
that is, a lower confidence limit of LDp with an
assurance level 1 - a, which can be obtained by a
well-known technique in the probit analysis.
Under the probit model, the fitted curve is given

by

0.0289 + '1 (-2.917 + 2.377 log x), (10)
which is described in Figure 1. The chi-square value
of test for homogeneity is 4.761 with 14 degrees of
freedom.
The proposed value x0 for different kinds of assur-

ance levels are given in Table 3. Here we choose
0.01, 0.005, 0.001, 0.0005, and 0.0001 as risk levels.
A very small value like 10-8 was adopted as a risk
level by Mantel and Bryan (4) to estimate the safe
dose against carcinogenicity. But we do not choose
such a small risk level, since chronic bronchitis is not
a serious disease, but may be only a symptom. On
the other hand, cancer is a fatal one.
Tables 2 and 3 show that x0 obtained by the HS
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Table 3. Lower confidence limits under the probit model with vari-
ous kinds of risk and assurance levels for data of Table 1.

Risk level p

a 0.01 0.005 0.001 0.0005 0.0001

0.5 1.780 1.398 0.849 0.700 0.462
0.05 1.461 1.055 0.537 0.412 0.234
0.01 1.286 0.877 0.3% 0.290 0.149
0.005 1.213 0.806 0.344 0.247 0.121

regression method is consequently according to xO
with a risk level about 0.005 or less.

Application to Los Angeles Nurse
Study

Similar discussions can be made about data from
the Los Angeles Nurse Study (5). The summary data
are cited in Table 4. The authors used the HS regres-
sion method. The parameters X30, f81, and 82 were
estimated by the least-square method under the re-
striction that both lines are connected, that is, the
three parameters are estimated simultaneously. Ap-
proximate confidence limits were also obtained.
The probit model with a positive spontaneous ratio

is also applicable to these data. Here we discuss
mainly analysis of eye discomfort, and add that of
chest discomfort. Eye discomfort is a typical symp-
tom caused by photochemical oxidants. Daily
maximum hourly oxidant levels given as intervals in
Table 3 are read as midpoints of intervals.
We compare the two models mentioned above.

Suppose Y(x) is a random variable which takes the

Table 4. Relationshipofaverage daily percent ofadjusted symptoms
to photochemical oxidant levels.

Average daily percent of
symptom reported, %a

Daily maximum
hourly oxidant No. Eye Chest

level, ppm of days discomfort discomfort

cO.04 229 5.0 1.8
0.05-0.08 184 5.4 1.8

0.09 35 5.6 1.9
0.10-0.14 176 5.9 1.8
0.15-0.19 144 6.9 1.7
0.20-0.24 63 9.2 1.6
0.25-0.29 25 11.2 2.0
0.30-0.39 9 17.8 2.3
0.40-0.50 3 31.8 5.8

aData of Hammer et al. (5).
bAM1 days on which the symptom was reported along with

"feverish" "chilly" or "temperature" are excluded.

value 1 if a student complains of the symptom under
a daily maximum hourly oxidant level x, and has a
value 0 if not. The HS regression model means here

Y(x) - Bi f(x)] (1 1)
wheref(x) is defined in Eq. (1). Another definition
with normally distributed random error is discussed
later. the probit model means

Y(x) - Bi[80 + (1 - 80) D (I18 + 12 log x)] (12)

The maximum likelihood estimators of I80, X31, and
2 under the HS regression model are given by

A Po = 0.0540
91 + 2X = -0.03575 + 0.5873x

Those under the probit model are given by
. 1 (.

P3o + (1 -,X30) (D (PI3 + Pl2 log x) =

0.0523 + 0.9477 (D (0.402 + 3.307 log x)

(13)

(14)
These two are described in Figure 2. As the figure
shows, the probit model is fitted better. Chi-square
values are 6.436 under the probit model, and 21.534
under the HS regression model with common 6 de-
grees offreedom. This implies that the HS regression
model is statistically significant with level 5%.
Lower confidence limits under the probit model

with various kinds ofassurance levels and risk levels
are given in Table 5. Lower confidence limits with an
assurance level 0.5 are reduced to point estimators.
The maximum likelihood estimator xo under the HS
model is 0.153. We do not calculate confidence

>
OQ

b. PO
b)1

L0XoP-0.

FIGURE 2. Data ofphotochemical oxidant and eye discomfort, and
fitted regression lines.
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Table 5. Lower confidence limits under the probit model with vari-
ous kinds of risk and assurance levels for data of Table 2.

Risk level p

a 0.01 0.005 0.001 0.0005 0.0001

0.5 0.150 0.126 0.088 0.076 0.057
0.05 0.134 0.110 0.073 0.062 0.044
0.01 0.127 0.103 0.066 0.055 0.038
0.005 0.124 0.100 0.063 0.053 0.036

intervals, since test for homogeneity is statistically
significant.
To apply the HS model to these data, we need to

modify an assumption to the error term. Here the
binomial distribution in Eq. (11) is replaced by a
normal distribution. Let Y(x) be a random variable
which represents incidence ratio of students with
positive symptom on a day with maximum hourly
oxidant level x. The distribution of Y(x) is given as
follows

Y(x) -f(x) + e
e - N (0, q-2) (15)

This model is available, if disturbance comes not
only from variation among individuals but other
various causes, for example meteorological factors,
errors from surveys, and so on. The latter can be
essential, since the quality of epidemiological data is
limited to some extent.

This modified model seems to be applicable. This
means that the HS procedure is robust. The es-
timators of the parameters are given by

A

0.0541
A

+ 1832X =00172 + 0.491x (16)
which implies x0 = 0.145. This is similar to the esti-
mated value in the HS model under binomial dis-
tribution. Further detailed analysis is omitted here.

Similar results have been obtained also in the case
of chest discomfort. Both the probit model and the
HS model under binomial distribution are well fitted.
Chi-square values for homogeneity with their com-
mon 6 degrees of freedom are 1.533 and 1.673, re-
spectively. The probit model is preferable in this
case, too.

Discussion
Some conclusions and suggestions can be given

through the above applications and other experi-
ences.
The HS method is of omnibus use. In fact, the

model is often well fitted as the simple linear regres-

sion. The defect is lack of scientific and medical
interpretations of x0. It is hoped that intersection of
both lines means a safe dose. But for this purpose we
need a certain physiological proof. That is, it is nec-
essary to show existence of the positive threshold
value. If otherwise, x0 does not necessarily have
special meanings. Practically the model is often as-
sumed only for convenience. It is usually convinced
that the dose-response curve is smoothly increasing,
even in the case that the HS model is assumed.
A model with a smoothly increasing regression

curve can delete this serious problem, but brings
another one. A curve regression model does not
present a point which suggests a safe dose directly.
Thus a risk level is introduced to define a safe dose.
This definition is more natural than that by an inter-
section in the HS model.
The trouble is about how we choose a suitable

family of regression curves. Fortunately, we have
many conventional models of dose-response re-
lationships, for example, the probit model, the logit
model, and so on. Our two examples show the probit
model is well fitted, even though the data are ob-
tained not from experiments but from epidemiologi-
cal surveys.
The polynomial regression models are frequently

used, when the linear regression model is not well
fitted, but they are not applicable to our problem. In
fact, the regression model using the polynomial of
order 3 is well fitted to both data, but the estimated
regression curves are unacceptable.

Related Problems
There are many related problems to comparisons

between the HS model and the probit model. In this
section we are going to deal with two examples.

Inverse Estimation of Regression Analysis
The most popular technique for analysis of bi-

variate data is the linear regression method. The
inverse estimation of linear regression is often used
to estimate safe doses. Let (xl, Yi), ..., (Xn, Yn)
denote data. Under the linear regression model

Y = 13o + 31x + E
e - N(0, v.2)

an estimated regression line is written by
A A

Y = 13o + /x

An estimated safe dose x0 is defined by

Yo = 130 + 1Xo

(17)

(18)

(19)
where y0 is given by another criterion, for example a
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standard by the administration or a detection
threshold of chemical analysis. The HS method is
reduced to this one, when I3o is known. Of course, a
lower confidence limit is preferred to the above defi-
nition xO.

This method is not seen in the literature by statisti-
cians, but really often used. This simple method also
should be used after careful considerations. We will
give a practical example.
A result ofan experiment on residual antibiotics in

growing chick's organ is presented in Table 6 (18).
The chicks were sacrificed after 4 weeks on diets

containing various levels of kanamycin, and the
kanamycin potency was determined by bioassay.
We concentrate on figures in the blood. The
threshold sensitivity is 0.1 ,ug potency/ml blood.
Our purpose is to obtain suitable estimator of safe

levels. Now at first we ignore figures in the first
column for simplicity which are below the threshold
sensitivity. This does not change the following dis-
cussion. Let (x1, Yi), ..., (x20, Y2o) denote data in
Table 6, where xi are dietary levels and vi are res-
idues in the blood. The log-log linear model is as-
sumed, that is, for i = 1, . .., 20

logyi = go + f1 log xi + Ei
E-N (0, 0.2) (20)

Let Y(x) be a random variable which represents res-
idue of kanamycin on a dietary level x. Using an
assurance level a, a risk level p, and a threshold level
r, a safe dose x0 is defined by

x0= max{xlPr [Pr (Y(x) > r) c
PI(Xl, Yi), ..*, (Xn, Yn)] 2 1 - al} (21)

Table 6. Content of kanamycin after 4 weeks on diets containing
various levels of kanamycin.a

Potency, ,ug/ml

Diet Diet Diet Diet Diet
20 1000 4000 8000 16000

Organ ,ugIg ,g/g 'Ug/g Ag/g ju,g/g

Blood Ob 0.11 0.30 0.85 1.45
0 0.10 0.27 0.66 2.00
0 0.10 0.30 0.65 1.50
0 0.11 0.72 1.50 2.90
0 0.60 0.27 1.03 2.90

Liver 0 0.50 3.30 5.15 11.75
0 0 3.70 5.05 9.25
0 0 3.45 10.05 15.25
0 0.52 3.03 8.25 15.50
0 0.65 3.09 8.25 16.00

aData of Yoshida (8).
bNo kanamycin was detected.

Table 7. Lower confidence limits with various kinds of three levels
for data in Table 6.

Threshold level T
Risk

a level p 0.1 0.05 0.01

0.5 0.01 213.00 102.22 18.60
0.005 185.28 88.95 16.18
0.001 139.11 66.78 12.15

0.05 0.01 72.03 29.13 3.50
0.005 58.64 23.76 2.86
0.001 38.35 15.57 1.89

0.01 0.01 31.31 11.22 1.01
0.005 24.14 8.66 0.78
0.001 14.08 5.07 0.46

The definition means that it holds with probability
1 - a that the ratio of chicks in which the residue is
higher than a threshold value r is less than p. The
procedure to get x0 was obtained exactly by
Takeuchi (9). An approximate one was also given
there.
For the data in Table 6, x' s are calculated with

various kinds of three levels, which are listed in
Table 7. On the other hand, lower confidence limits
of xo defined in Eq. (19) give fatal results.

Linear-Plateau Model
The linear-plateau model is analytically equivalent

to the HS model. The regression function in the
linear-plateau model is a reverse form of that in the
HS model. That is, it is written by

f (X) = 81 + 2X X C Xo
= oo x > xo (22)

The model was used in the field of agriculture to
estimate the optimum fertilizer rate (10) and the op-
timum harvest time (11). The model was proposed
after comparing with the quadratic, square root and
exponential models. The model was recommended
by these authors, since the estimatorxo in the model
tends to be smaller than the maximum point of the
fitted quadratic curve and that of the square root
curve. It was concluded that x0 is suitable for these
purposes.
Now we study on the model from the viewpoint of

comparison with a model with a smoothly increasing
regression function.
Suppose that the true regression curvef(x) is qua-

dratic, that is

f(x) = f3O + 813x - f82x2 (23)
and that predictor variables are suitably allocated.
The linear-plateau model is possibly well fitted, and
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xO is smaller than the maximum point of the fitted
quadratic curve 813/2832.
Next, suppose that true regression curve f(x) is

strictly increasing in x, for example

f(x) = /1/(812 + exp{/-P3}) (24)
and that predictor variables are suitably allocated.
Even in this case the linear-plateau model can be well
fitted and an estimator xk is obtained, though f(x)
does not take the maximum value at x = xo.
These seem to correspond to the relationships

between the HS model and the probit model. Thus
we conjecture that another approach introducing
risk levels are available. The alternative method
must be more flexible and natural.

The authors wish to express their thanks to Professors
T. Shimizu, I. Yoshimura and S. Kaihara for their helpful advice
and discussions. All the necessary programs were prepared by
Miss Y. Sakamoto.
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